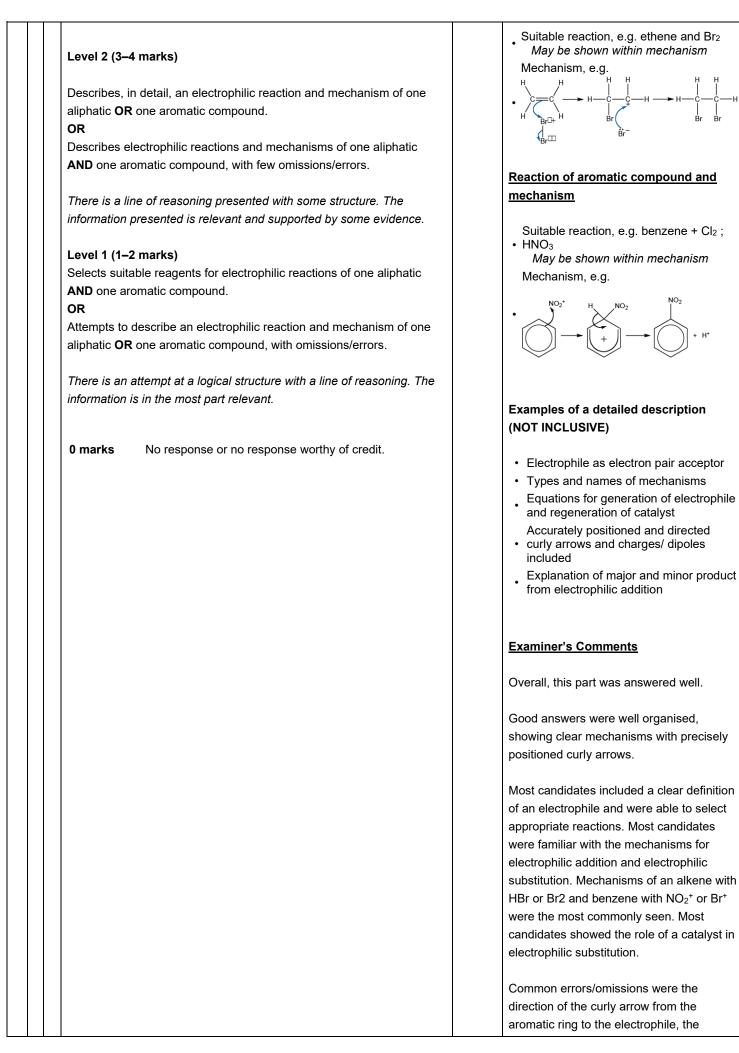

Mark scheme – Aromatic Compounds

Questi on	Answer/Indicative content	Marks	Guidance
1 i	Cl Cl Organic product with B Organic product with C	2 (AO2.5 ×2)	
ii	Reactivity of B in B electrons are localised OR in B π-bond is localised √ Reactivity of C in C electrons are delocalised OR In C electrons are delocalised OR In C π-system / ring is delocalised In B, electron density is higher AND B is more susceptible to electrophilic attack OR B attracts/accepts the electrophile/Cl₂ more OR B polarises the electrophile/Cl₂ more √ ORA	3 (AO1.1 ×3)	ALLOW labelled diagram to show delocalised system IGNORE charge density IGNORE electronegativity IGNORE B is more reactive/reacts more readily (no reference to electrophile) IGNORE references to electron density spread around the π-ring ALLOW chlorine Examiner's Comments Candidates answered this question well. Many were able to correctly use the terms delocalised and localised in their responses and were able to provide comparisons for both electron density and attack of an electrophile.
ii i	Generation of electrophile $A C _3 + C _2 \rightarrow A C _{4^-} + C ^+ \checkmark$ Attack of Cl ⁺ $\qquad \qquad $	5 (AO1.2) (AO1.2) (AO2.5) (AO1.2) (AO1.2)	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW FeCl ₃ + Cl ₂ → FeCl ₄ + Cl ⁺ ALLOW use of Fe NOTE: curly arrows can be straight, snake-like, etc.



Delocalised has: π ring (system) / all p orbitals overlap OR (π electrons) spread around ring / overlap in both directions / 6 electrons **ALLOW** from labelled diagram showing π bond e.g. in π bond /

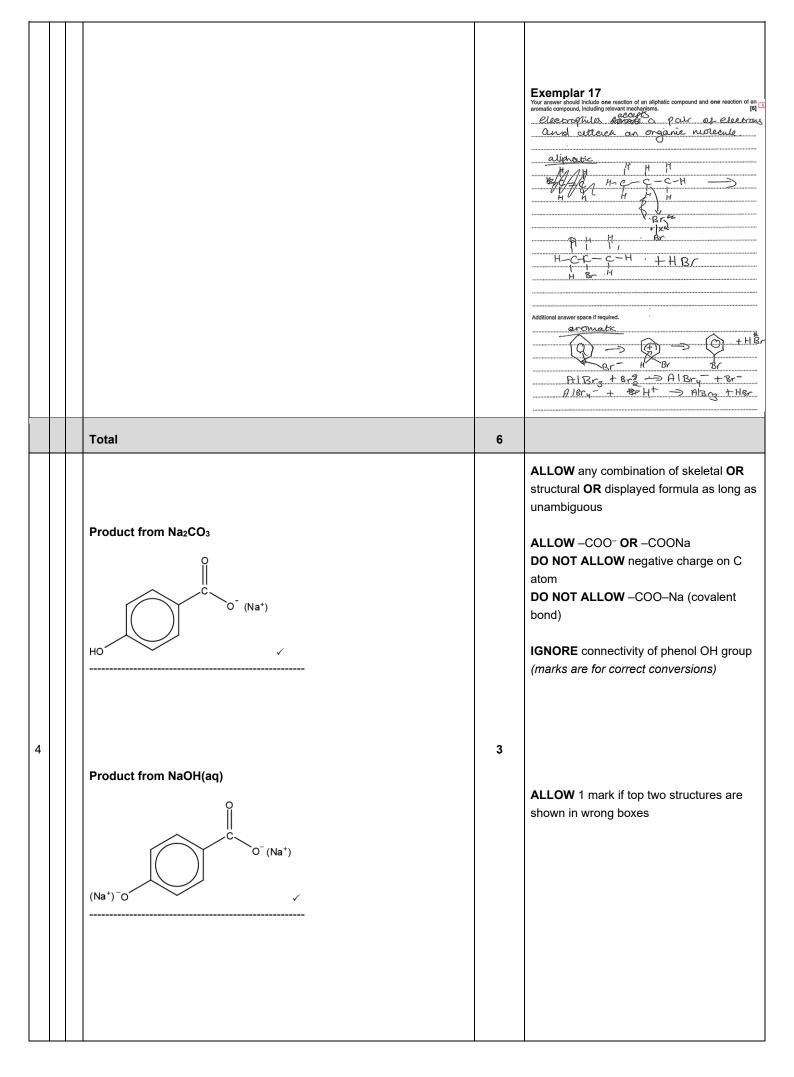
Delocaused structure ques more stabulity

					This response starts with a diagram for both the Kekulé and delocalised models of benzene. Each diagram is clear and shows the p orbitals and π bonds separately. This is an excellent response for future candidates to follow. The candidate's written response is effectively a description of the diagrams they have drawn and describes the similarities and differences between these two models clearly. This response scored full marks and demonstrates the best style of response seen in this part. ALLOW (C–C) bond enthalpy is between single (C–C) and double bond (C=C) OR all (C–C) bond enthalpies are the same
	i	II	 Any 2 pieces of evidence from (√ √) Bond length (C-C) bond length is between single (C-C) and double bond (C=C) OR all (C-C) bond lengths are the same <i>ΔH</i> hydrogenation <i>ΔH</i> hydrogenation less (exothermic) than expected Resistance to reaction Benzene is less reactive than alkenes OR bornination of benzene requires a catalyst/halogen carrier OR benzene does not react with/decolourise bromine (at room temperature) OR benzene reacts by substitution OR benzene does not (readily) react by addition 	2(AO 1.1 ×2)	IGNORE enthalpy of hydration Benzene is unreactive is not sufficient <i>(no comparison to alkene)</i> For halogen carrier, ALLOW name or formula of suitable catalyst e.g. Fe, AICl ₃ , FeBr ₃ Examiner's Comments Candidates were well prepared for this question and the majority of the cohort scored two marks. The most common piece of evidence given was the lack of reactivity of benzene with bromine, with candidates citing the need for a catalyst for the reaction to occur. Responses also included reference to carbon-carbon bond lengths as well as the enthalpy of hydrogenation. A small but significant proportion of the cohort referred to hydration rather than hydrogenation.
			Total	5	
3			Refer to marking instructions on page 5 of mark scheme for guidance on marking this question. Level 3 (5–6 marks) Describes, in detail, electrophilic reactions and mechanisms of one aliphatic AND one aromatic compound. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	6	Indicative scientific points may include: <u>Explanation of role of electrophiles in</u> <u>organic chemistry</u> <u>Reaction of aliphatic compound and</u> <u>mechanism</u>

position of the curly arrow when H⁺ is lost from an aromatic intermediate, and not showing the lone pair when Br₋ attacks a carbocation.

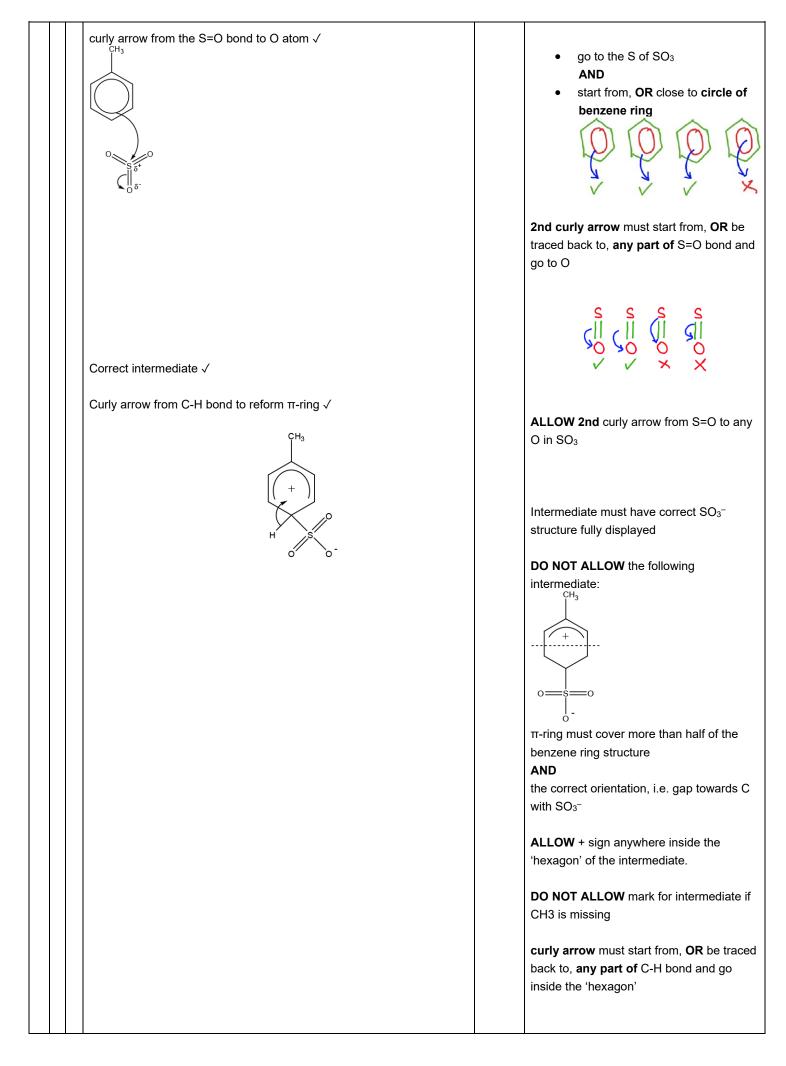
Some answers lacked detail and gave only two mechanisms with minimal supporting words.

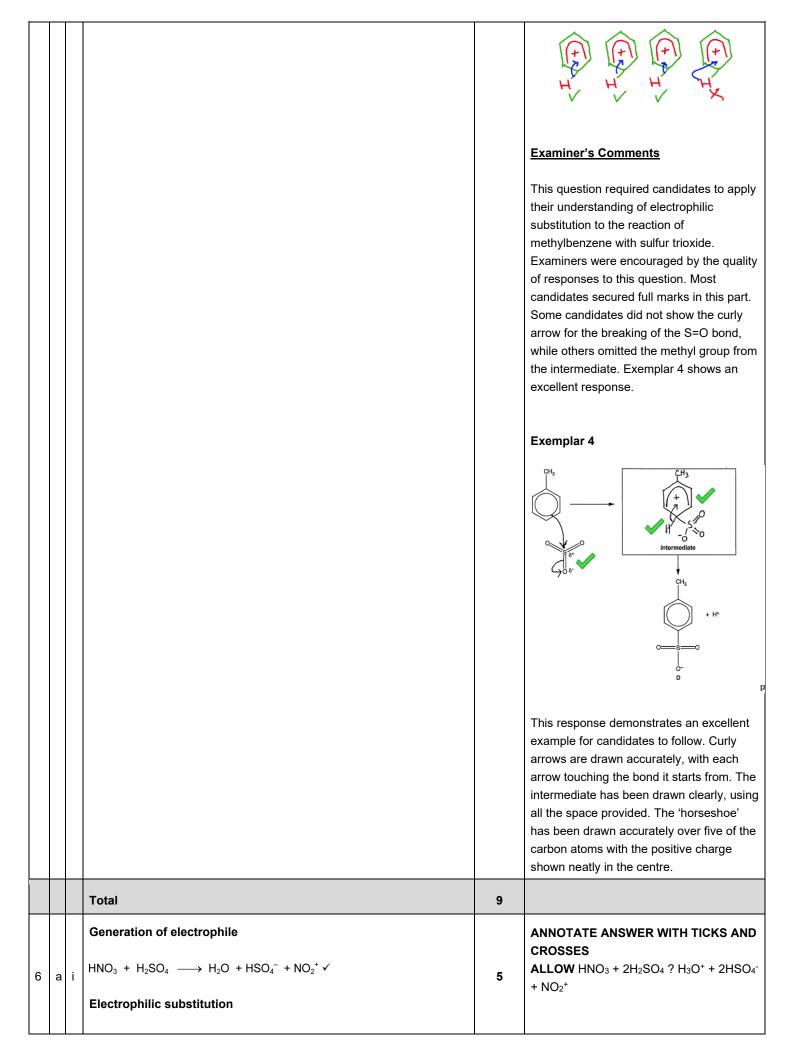
Lower ability candidates described nucleophilic addition or substitution as one of their mechanisms or had curly arrows going in the wrong direction.

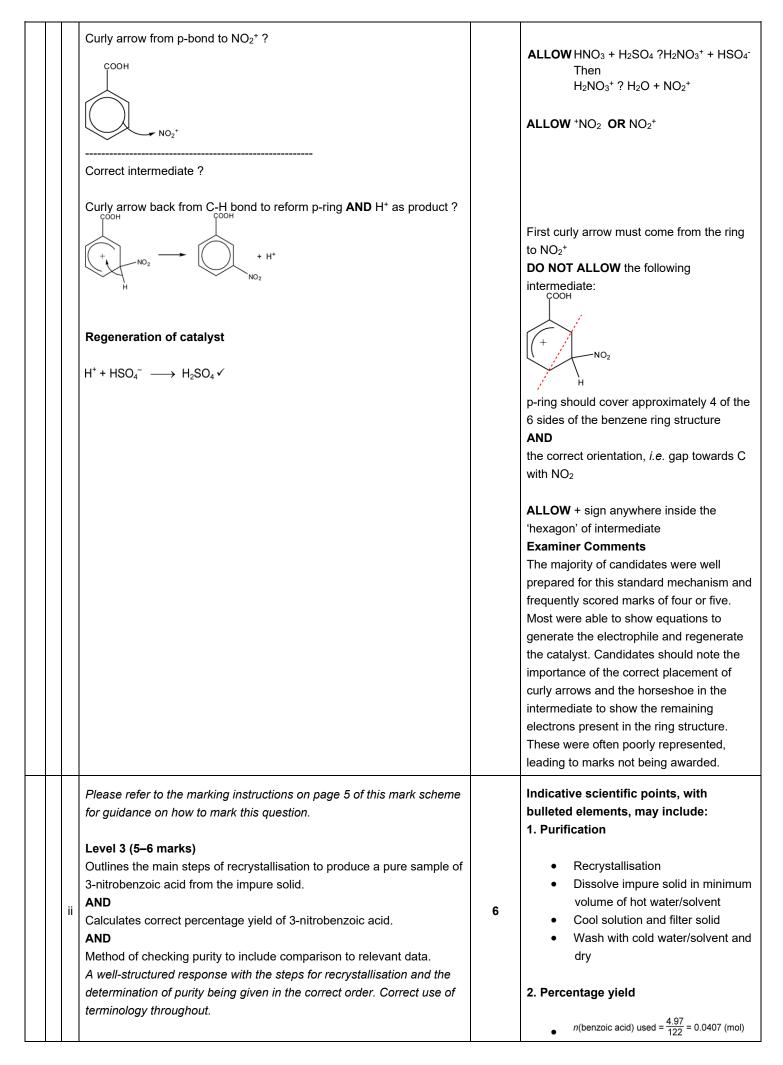

A few candidates answered in prose without including equations or diagrams. Candidates are advised that mechanisms must always be communicated in the usual diagrammatic way.

Exemplar 16 is a very clear and concise response showing all the key features of electrophilic addition and electrophilic substitution, including the role of the FeCl₃ catalyst. Curly arrows are precisely positioned, with correct use of lone pairs and charges. The candidate has demonstrated excellent knowledge and understanding.

The response in Exemplar 17 is clearly at a different level. The candidate has chosen an alkane rather than an alkene and has used curly arrows and charges incorrectly. This candidate appears to have been poorly prepared.


Exemplar 16


[6] luding rele Electrophiles are electron pair acceptors; and can accept or pair of electrons how 23 Aliphatic: Electrophilic addition: Ņ H-H J Co Br ٠, C2M4+ MBr , ~ C2M5Br 7. 12A Aromatic: electrophilic: substitution Feel3 + Cl2 -> Feel4 + Cl C'cit Additional answer space if required. \rightarrow Fell, -> HCL + Fell, Fetta + HCC



			Product from Br ₂		ALLOW substitution of any H from benzene ring
			e.g. HO		ALLOW multiple substitution, <i>i.e.</i> di-, tri- and tetrabromo products. IGNORE connectivity of phenol OH group (marks are for correct conversions)
					Examiner's Comments
					This question assessed different reactions of compound H , 4-hydroxybenzoic acid, and discriminated well. Two of the reactions focused on acid-base chemistry, using the reagents Na ₂ CO ₃ and NaOH. Many candidates recognised that the carboxylic acid group would react in both cases but only some managed to identify when the phenol group was involved correctly. A number of responses suggested that a phenoxide ion was formed with sodium carbonate but not with sodium hydroxide. The third reaction was substitution with bromine. This reaction appeared more familiar to all candidates with the majority scoring this mark. A small proportion of candidates substituted the phenol OH group or carboxylic acid group.
			Total	3	
5	а	i	Number of peaks2 marks2-nitrophenol AND 3-nitrophenol have six peaks/environments/types of carbon √4-nitrophenol has four peaks/environments/types of carbon √4-nitrophenol has four peaks/environments/types of carbon √1 mark	3	IGNORE any numbers shown on structures ALLOW 1 mark only IF a response identifies that all the compounds have 6 peaks/environments/types of C OR all the compounds have 4 peaks/environments/types of carbon IGNORE chemical shifts
			 4-nitrophenol can be distinguished OR 2-nitrophenol and 3-nitrophenol cannot be distinguished √ 		DO NOT ALLOW ECF from an incorrect number of peaks/environments/types of carbon <u>Examiner's Comments</u>

				This question required candidates to apply their knowledge of ¹³ C NMR spectroscopy to deduce the number of different carbon environments in each of the nitrophenols shown. The best responses were succinct, stating that it is possible to distinguish 4- ntirophenol from the other two after deducing the correct number of carbon environments for each compound. Lower ability candidates' responses did not identify the symmetry in 4-nitrophenol and suggested all three compounds would produce six peaks, therefore making it impossible to distinguish between them.
	ii	(In phenol) a (Ione) pair of electrons on O is(partially) delocalised/donated into the π-system / ring √ Electron density increases/is higher (than benzene) √ ORA (phenol) is more susceptible to electrophilic attack OR (phenol) attracts/accepts electrophile/HNO ₃ more OR	3	ALLOW the electron pair in the p-orbitals of the O atom becomes part of the π- system / ring ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled/ into π- system / ring IGNORE activating IGNORE charge density IGNORE charge density IGNORE phenol reacts more readily (<i>no</i> <i>reference to electrophile</i>) ALLOW NO ₂ ⁺ for electrophile
		(phenol) polarises electrophile/HNO₃ more √ ORA		Examiner's Comments The relative reactivity of phenol is well known by candidates at this level and the majority scored two or three marks. Candidates who did not score full marks gave imprecise or vague explanations. This included reference to 'higher charge density' or 'higher electronegativity' of the phenol ring, rather than 'higher electron density'.
				ANNOTATE WITH TICKS AND CROSSES
b			3	NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows
		Curly arrow from π-bond to S in SO ₃ AND		1st curly arrow must

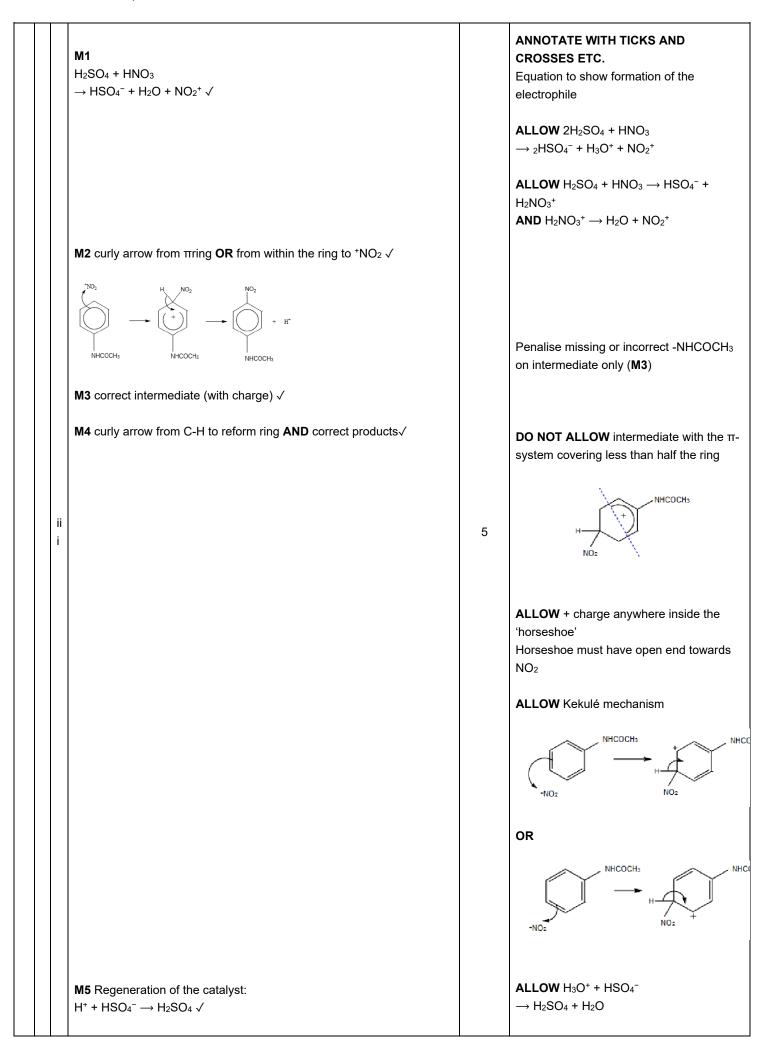
Level 2 (3–4 marks) Attempts all three scientific points but explanations may be incomplete. OR	• $n(3\text{-nitrobenzoic acid}) \text{ made } = \frac{4.85}{167} = 0.0290 \text{ (mol)}$ • percentage yield $= \frac{0.0290}{0.0407} \times 100 = 71.3 \text{ (%)}$
Explains two scientific points thoroughly with very few omissions. The description of checking for purity or recrystallisation is clear and any calculations structured. Key terminology used appropriately.	ALLOW 71 to calculator value of 71.29001554 correctly rounded.
Level 1 (1–2 marks) A simple explanation based on at least two of the main scientific points. OR Explains one scientific point thoroughly with few omissions. There is an attempt at a logical structure. The description of the practical techniques provides some detail but may not be in the correct order.	CHECK for extent of errors by ECF Alternative correct calculation may calculate theoretical mass of 3- nitrobenzoic acid that can be produced as $0.0407 \times 167 = 6.80$ (g) followed by: percentage yield $=\frac{4.85}{6.80} \times 100 = 71.3$ (%)
 Purification step is unclear with few scientific terms and little detail, e.g. just 'recrystallise'. Calculation is difficult to follow, may just include a calculation of moles of reactants and/or products. Purity check specifies a method but this is unclear with little detail, e.g. take melting point. 0 marks No response or no response worthy of credit. 	 Calculation must attempt to calculate n(benzoic acid) in mol. 3. Checking purity Obtain melting point Compare to known values Pure sample will have a (sharp) melting point very close to data book value
	 ALLOW alternative approach based on spectroscopy or TLC Spectroscopy Run an NMR/IR spectrum Compare to (spectral) database Spectrum of pure sample will contain same peaks and not others
	 TLC Run a TLC Compare (<i>R</i>f value) to known data Pure sample will have a very similar Rf
	Examiner Comments This question tested some of the practical techniques covered as part of the practical endorsement as well as requiring candidates to calculate a percentage yield for the reaction. This proved to be quite a

				dissolving in a hot solvent and then being allowed to cool before carrying out filtration. High quality answers often went above and beyond the requirements of the marking scheme with some candidates discussing the importance of dissolving in the minimum amount of hot solvent to obtain a saturated solution, the need to wash and dry the crystals and provided detail of the apparatus and or method required. Most candidates discussed that purity could be determined by taking the melting point of the product and comparing this to a value obtained from data book. The most comprehensive answers gave an indicated of the apparatus required to carry out the melting point determination and discussed how the melting point becomes higher and sharper as impurities are removed. Common errors included comments about carrying out a boiling point determination. When carrying out a percentage yield calculation, it is important to round answers only at the last stage of the calculation. Early rounding frequently led candidates to obtain answers, which did not gain credit. Weaker Candidates divided the mass of 3-nitrobenzoic acid by the mass of benzoic acid and obtained an answer of 97.6%. Answer = 71.3%
b	i	Phenol is the most easily nitrated/most reactive AND Benzoic acid is the least easily nitrated/least reactive √	1	e.g. nitration becomes more difficult from phenol (to benzene) to benzoic acid OR nitration becomes easier from right to left in the table Examiner Comments The vast majority of candidates gave a good answer to indicate that it was easier to carry out the nitration of phenol than

			benzene and that benzene would undergo nitration easier than benzoic acid.
			ANNOTATE ANSWER WITH TICKS AND CROSSES
			ALLOW the electron pair in the p orbitals of the O atom becomes part of the p- system / ring
			ALLOW diagram to show movement of lone pair into ring ALLOW lone pair of electrons on O is (partially) drawn/attracted/pulled into p-system / ring
	Reactivity of phenol		IGNORE activating and deactivating.
	a (lone) pair of electrons on O is (partially) delocalised/donated into the p-system/ring		ALLOW the following alternatives for susceptibility to attack:
			 phenol attracts electrophiles / NO₂⁺ more phenol polarises electrophiles / NO₂⁺ more benzoic acid attracts electrophile / NO₂⁺ less
ii	Reactivity of benzoic acid The –COOH group on benzoic acid is an electron withdrawing group \checkmark	3	 benzoic acid polarises electrophiles / NO₂⁺ less
	Links electron density in p-bond to reactivity		Examiner Comments The most able candidates scored well or
	In phenol electron density is higher		what proved a difficult question for many
	AND The ring is more susceptible to attack		Although the vast majority of candidates knew about the reasons behind phenol's increased reactivity many were unable to
	OR		express themselves clearly to gain credit Often answers lacked the specific detail
	In benzoic acid electron density is lower		about the lone pair on the oxygen atom i
	AND The ring is less susceptible to attack √		the -OH group being delocalised into the ring. Weaker answers discussed electron being supplied to the ring, the -OH group providing the electrons to the ring or just that -OH is an activator. Good answers
			expressed the increase in electron densi and the subsequent increase in phenol's
			susceptibility to electrophilic attack. The most able candidates were able to
			interpret the information given in the
			question to establish that the -COOH
			group must be electron withdrawing
			leading to decreased electron density of
			the ring structure and reduced ability to

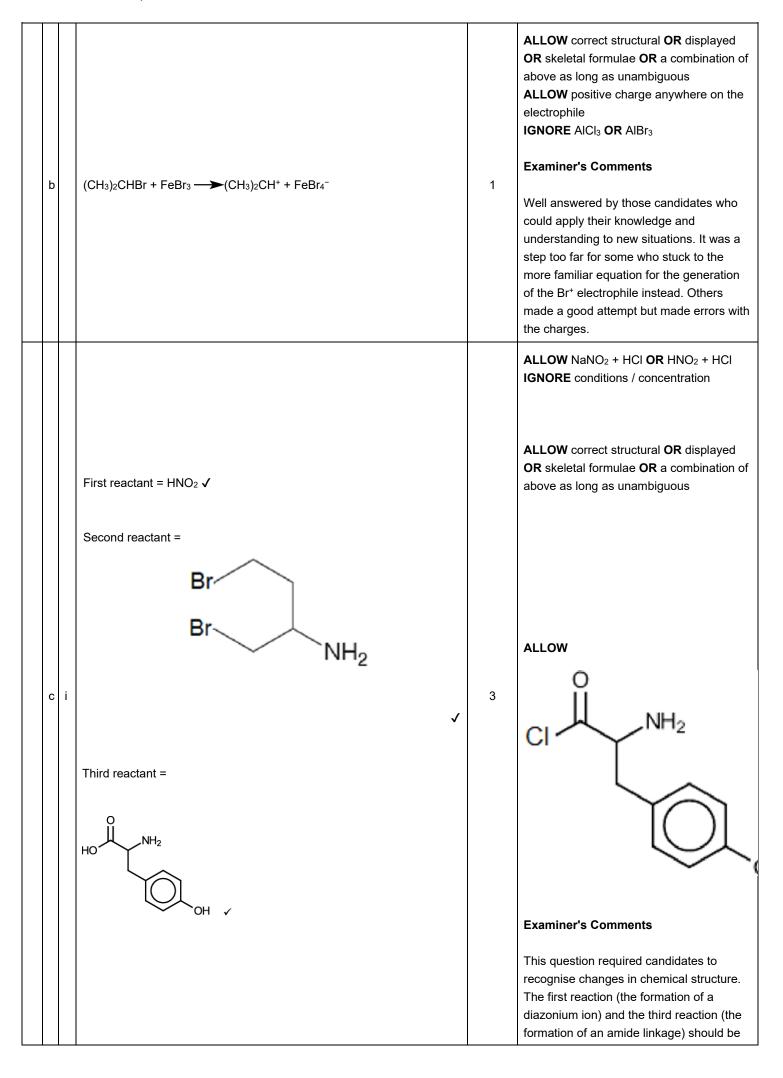
c i	Bromination: Br_2 AND A/ Br_3 /Fe Br_3 /Fe \checkmark Intermediate $\downarrow \qquad \qquad$	3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW any suitable halogen carrier catalyst ALLOW Kekulé structure IGNORE names (question asks for formulae) IGNORE reaction conditions even if incorrect IGNORE 'dilute' for HC/ IGNORE 'dilute' for HC/ IGNORE H ₂ IGNORE MaOH if seen as a reagent to convert nitro group into amine e.g 'Sn/(concentrated) HC/ then NaOH' scores the mark Examiner Comments Candidates were able, in the main, to provide the reagents for bromination and reduction. The structure of the intermediate compound in the preparation of 3-bromophenylamine proved to be straightforward, however common errors involved the omission of the halogen carrier catalyst for bromination or stating names rather than formulae as indicated in the question.
	NH ₂ is 2,4 directing \checkmark Products (1 mark for each): $\downarrow \downarrow \downarrow \downarrow$ Br $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow	3	IGNORE references to electron donating/withdrawing groups ALLOW –NH ₂ activates the ring causing the new group to join at positions 2 and 4. ALLOW ortho and para directing for 2,4 directing IGNORE 6-directing ALLOW Kekulé structure IGNORE names Examiner Comments The most able candidates completed this question with a clear statement that the –NH ₂ group was 2,4 directing and provided two clearly drawn structures of 2- bromophenylamine and 4- bromophenylamine. The most common errors observed included drawing two structures that were identical and explaining the two structures in terms of electron donation from the –NH ₂

					without any indication of positioning. Candidates using the terms ortho and para directing were awarded full marks for their answers.
			Total	21	
7		i	$\begin{array}{c} CI & O \\ \\ CI - C \\ \\ CI \\ H_{\checkmark} \end{array}$	1	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
		ii	Any organic reaction in which sulfuric acid is a catalyst e.g: Elimination of (H ₂ O from) alcohols Nitration of benzene Esterification Hydrolysis of esters/amides	1	The answer needs to refer to the reaction: i.e. 'Elimination', 'hydrolysis' are insufficient but 'Esterification' describes the reaction DO NOT ALLOW oxidation for alcohols/ aldehydes
			Total	2	
8	a		One mark for each correct structure/reagent/condition as shown below	6	ANNOTATE ANSWER WITH TICKS AND CROSSES ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous IGNORE names of organic compounds (<i>question asks for structures</i>) ALLOW aluminium(III) chloride OR aluminium trichloride ALLOW FeC/ ₃ OR Fe as halogen carrier in first step. ALLOW sodium borohydride OR sodium tetrahydridoborate IGNORE [H] for reducing agent in second step ALLOW H ⁺ / H ₂ SO ₄ / H ₃ PO ₄ / named mineral acid for reagent in third step
	b		Use as an organic feedstock \checkmark	1	ALLOW the production of plastics or monomers


6.1.1 Aromatic Compounds

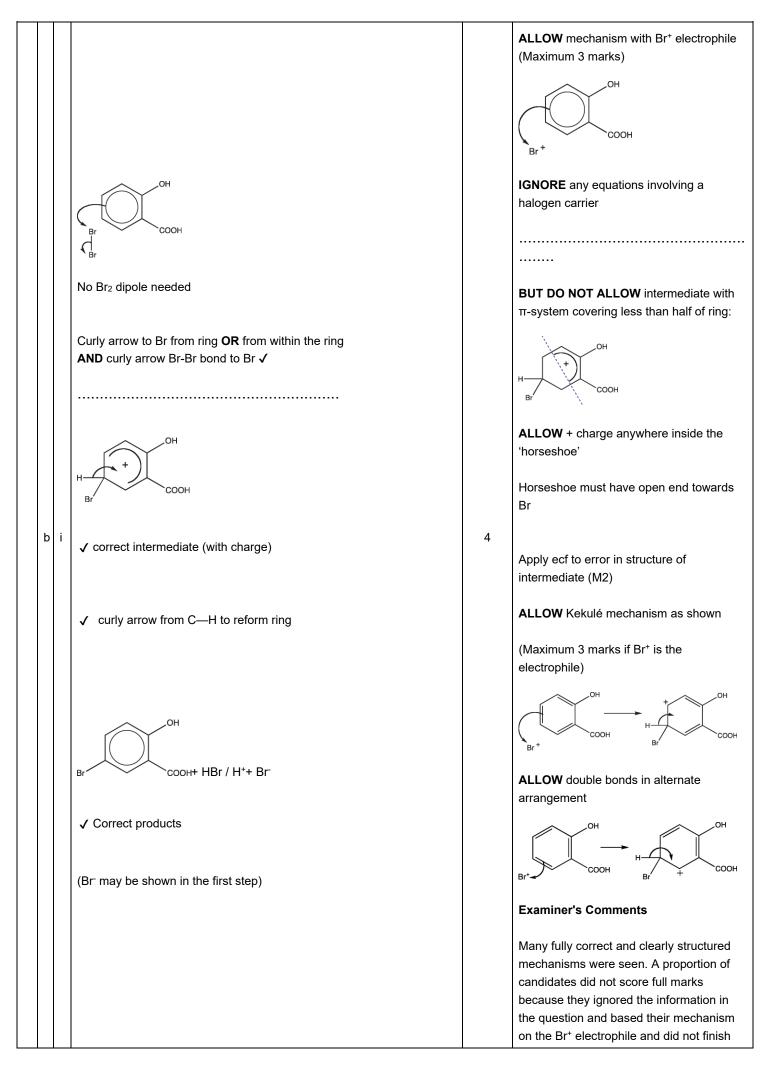
		OR		
		UR		or new polymers
		Combustion for energy production \checkmark		Combustion alone is not sufficient
		Total	7	
9 a	i	Total Dipole shown on C=O bond, $C^{\delta+}$ and $O^{\delta-}$, AND curly arrow from the C=O bond to the $O^{\delta-}$ atom AND Curly arrow from π -bond to C in CO ₂ \checkmark $\int_{0}^{0} \int_{0}^{0} \int$	3	ANNOTATE ANSWER WITH TICKS AND CROSSES DO NOT ALLOW the following intermediate: $\int_{i} \int_{i} \int_$
				'horseshoe' in the correct orientation, <i>ie</i> gap towards C with COO [−] ALLOW + sign anywhere inside the 'hexagon' of intermediate
	ii	Neutralisation ✓ (In Stage 1) phenol loses H ⁺ AND	2	ALLOW acid-base ALLOW both Stage 1 AND Stage 3
		(In Stage 3) carboxylate ion gains $H^+ \checkmark$		involve proton transfer
	ii i	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 7.31 (g) award 3 marks	3	ANNOTATE ANSWER WITH TICKS AND CROSSES
				ALLOW ECF at each stage

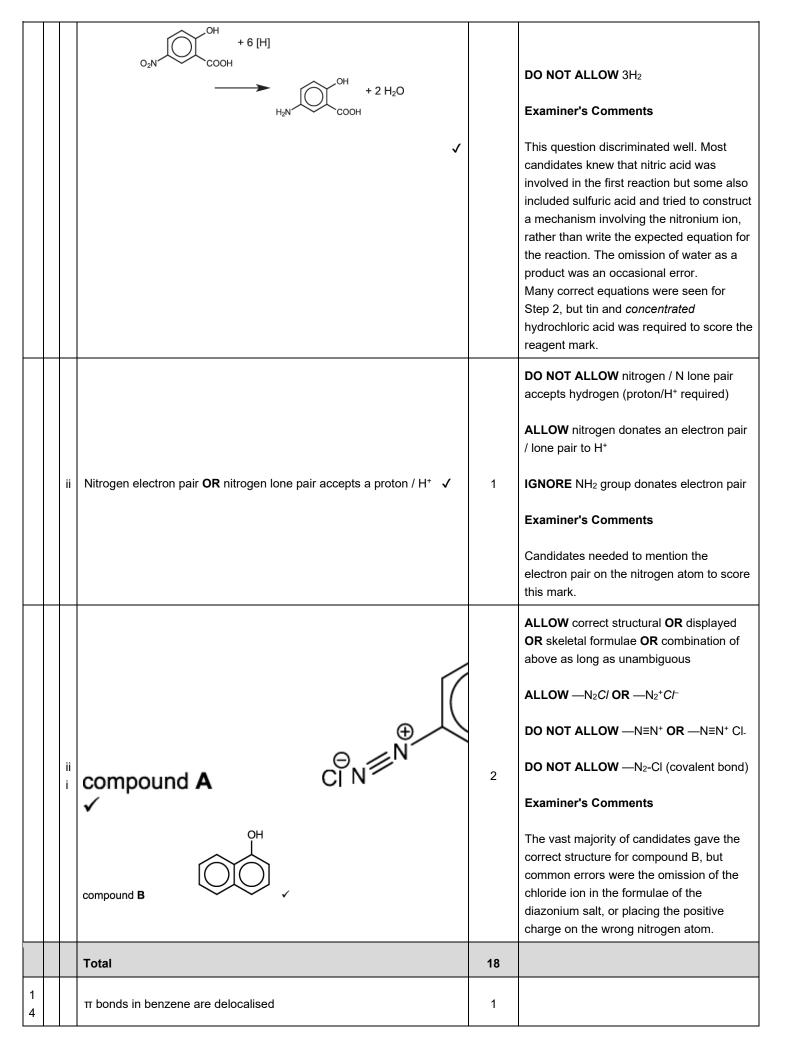
6.1.1 Aromatic Compounds


			actual $n(\text{salicylic acid}) \text{ produced} = \frac{4.83}{138} = 0.035(0) \text{ (mol) } \checkmark$ theoretical $n(\text{phenol}) = n(\text{salicylic acid}) = 0.035(0) \times \frac{100}{45.0} = 0.0778 \text{ (mol) } \checkmark$ Mass of phenol = 0.0778 × 94.0 = 7.31 (g) \checkmark		ALLOW 3 SF up to calculator value correctly rounded for intermediate values 100 ALLOW expected mass compound E $= 4.83 \times 45.0 = 10.733 \text{ (g)}$ ALLOW Mass phenol reacted = $0.035 \times 94.0 = 3.29 \text{ (g)}$
					ALLOW Mass of phenol used = $3.29 \times \frac{100}{45.0} = 7.31$ (g) Note: 1.48 g would get 2 marks (use of 45.0/100 instead of 100/45.0) 7.30 g would get 2 marks (use of 0.0777 for moles phenol)
	b		Skeletal formula of aspirin \downarrow \downarrow \downarrow \downarrow \downarrow Skeletal formula of ethanoic acid \downarrow	2	IF skeletal formulae are not used ALLOW one mark if both the structures of aspirin AND ethanoic acid are correct
l			Тotal	10	
1 0		i	Ethanoic anhydride O $OH_{3}C O CH_{3}Other organic compound$	2	ALLOW skeletal formula
					ALLOW correct structural OR displayed

			OR skeletal formulae OR a combination of above as long as unambiguous IGNORE names Examiner's Comments The structure of ethanoic anhydride was well known and most candidates gave the correct structure for the other organic product of the reaction.
	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 2.66 (g) award 3 marks IF answer = 4.36 (g) award 2 marks (% yield not used) IF answer = 7.14 (g) award 2 marks (% yield used incorrectly) n(phenylamine) (= $3.00/93.0$) = 0.0323 mol \checkmark n(compound A) = (0.0323×0.61) = 0.0197 mol \checkmark Mr (compound A) = 135 AND Mass of compound A = (135)(0.0197) = 2.66 g \checkmark OR n(phenylamine) (= $3.00/93.0$) = 0.0323 mol \checkmark Mr (compound A) = 135 AND Theoretical mass of compound A = (0.0323×135) = $4.36 \checkmark$ Actual mass of compound A = (4.36×0.61) = 2.66 g \checkmark	3	ANNOTATE WITH TICKS AND CROSSES ETC. ALLOW 3 SF: 0.0323 up to calculator value of 0.032258064 correctly rounded ALLOW 3 SF up to calculator value Penalise rounding to 2 SF once ALLOW ECF on incorrectly rounded values Final answer must be expressed to 3 significant figures ALLOW ecf from incorrect Mr ALLOW ecf from incorrect Mr IF answer = 2.65 (g) award 2 marks unless this alternative method is used (3 marks) 93 g gives 135 g 3.00 g gives 135/93 x 3.00 = 4.35 g 4.35 x 0.61 = 2.65 g Examiner's Comments Once again it was clear that candidates had been well prepared for this type of percentage yield question. It was well answered with almost all candidates scoring some marks here and a high proportion gaining all three marks for the calculation.

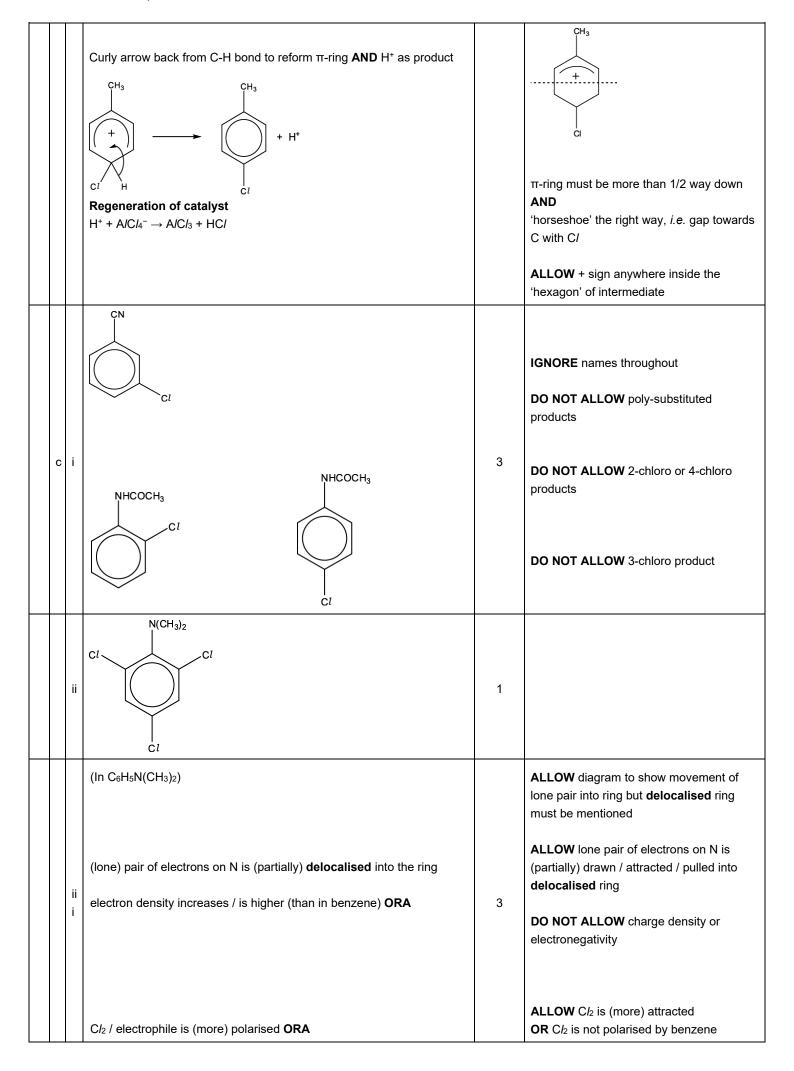
					Examiner's Comments
					Although some lost marks through minor errors on the details, most candidates scored well on this question
			Total	10	
1			$ \begin{array}{c} $	1	 ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstitution at any positions on benzene ring Examiner's Comments Generally well answered. Some candidates reacted compound B with only one mole of bromine or three moles of bromine and this underlines the importance of paying careful attention to information given in the stem of the question. Hydrogen, not HBr, was occasionally formed as the other product.
			Total	1	
1 2	а	i	M1 p-orbitals overlap (to form pi / π-bonds) ✓ M2 π-bond(s) are delocalised in structure B ✓ M3 π-bonds are localised / between two carbons in structure A ✓ M4 M4 M4 Diagrams show correct position of delocalised and localised π-bonds / π-electrons	4	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC IGNORE p-orbitals overlap to form sigma bonds ALLOW electrons are delocalised in structure B IGNORE B has delocalised structure or ring (must be electrons or π-bonds) ALLOW π-electrons / p-orbital overlap localised / between two carbons in structure A ALLOW p-orbitals overlap with one other carbon IGNORE electrons are localised OR structure A has localised structure (must be π-bonds / π-electrons / p-orbital overlap) ALLOW labelled diagram showing overlap of p-orbitals between two carbon atoms DO NOT ALLOW C=C in this diagram Diagram for structure A must show the full ring for M4 IGNORE C=C in M4 diagram


Image: Structure B / delocalized spelled correctly and used in correct context IGNORE charge density Image: Structure B / delocalized spelled correctly and used in correct context Examiner's Comments Image: Structure B / delocalized spelled correctly and used in correct context Examiner's Comments Image: Structure B / delocalized spelled correctly and used in correct context Examiner's Comments Image: Structure B / delocalized sectors in structure B and p-otbal overlap were the most accessible marking points. ALLOW structure B in less reactive Image: Structure B / delocalised structure is (more) stable ✓ ALLOW structure B is less reactive for the reaction for benzene is less (negative) than 3 × (-)119 Image: Structure B is a better because (enthality change of hydrogenation for benzene is less (exothermic)) than (-) 357 (kJ mol ⁻¹) ✓ ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks) DO NOT ALLOW more / less energy needed for the reaction Answer must feet to data given in the question at must be a comparison (DNORE 360 kJ mol ⁻¹) No marks can be awarded if structure A is salected Image: Structure B is a better because (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ Ximple the data given in the question to compare the enthalpy change of hydrogenation for benzene is (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ Image: Structure B is a better because (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ Ximple the data given in the question to compare the enthalpy change is introduce A is salected Image: Structure B is a better because (exothermic) than (-) 357 (OR correct position of p-orbital overlap ✓		
Image: structure B / delocalised spelled correctly and used in correct context DO NOT ALLOW electronegativity Structures do not need to be labelled A and B if the description matches the structure Examine's Comments Many excellent answers with clear diagrams and explanations were seen. Delocalised electrons in structure B and portal overlap were the most accessible marking points. ALLOW structure B is low in energy tences with clear diagrams and explanations were seen. Delocalised electrones in structure B and portal overlap were the most accessible marking points. Image: structure B / delocalised structure is (more) stable ✓ ALLOW structure B is low in energy tences is less (exothermic) than (-) 357 (kl mor') Image: structure B is a batter because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kl mor'). ✓ ALLOW enthalpy change is less than 3x enthalpy change is less than 3x enthalpy change for cyclohexene 2 Examiner's Comments Any used the data given in the question the reaction for benzene is) less (exothermic) than (-) 357 (kl mor'). ✓ Image: structure B is a batter because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kl mor'). ✓ Yes and the data given in the question to comparison is low of structure A is selected Image: structure B is a batter because (enthalpy change is heat structure B is batter the case. Some candidates contuker B to treatively the candidates conture B but relatively the candi			IGNORE charge density
Image: select context Prequires delocalised / delocalized spelled correctly and used in correct context Structures do not need to be labelled A and B if the description matches the structure Examiner's Comments Many excellent answers with clear diagrams and explanations were seen. Delocalised electrons in structure B and the data given in the analy change / hydrogenation Delocalised electrons in structure B and portional overlap were the mast accessible marking points. Image: Structure B is low in energy (IMOME structure B is low in an energy (IMOME structure B is low in energy (IMOME structure B is more stable by 149 kJ mol ⁻¹ (2 marks) Image: structure B is a better because (enthistly change of hydrogenation for benzene is) less (exothermic) than (~) 357 (kJ mol ⁻¹) ✓ 2 Image: structure B is a better because (enthistly change of hydrogenation for benzene is) less (exothermic) than (~) 357 (kJ mol ⁻¹) ✓ 2 Image: structure B is better because (enthistly change of hydrogenation for benzene is) less (exothermic) than (~) 357 (kJ mol ⁻¹) ✓ 2 Image: structure B is better because (is more stable by otherame to be mark for stating that structure B is better representation of benzene because (is more stable. Some candidates scored the other mark for stating that structure B is better increased is low more table. Some candidates confused is contused is comareased is more exothermic that structure A	<i>₽</i> QWC		
correct context Structures do not need to be labelled A and B if the description matches the structure and B if the description matches the structure Examiner's Comments Many excellent answers with clear diagrams and explanations were seen. Delocalised electrons in structure B and p-orbital coverap were the most accessible marking points. ALLOW structure B is low in energy (GNORE structure B is low in energy (Cover) (STALLOW entrue) (STALLOW enterue) (STALLOW entrue) (STALLOW entrue) (STALLOW entru			DO NOT ALLOW electronegativity
Image: Structure B / delocalised structure is (more) stable ✓ ALLOW structure B is a better because (enthalpy change of hydrogenation for benzene to data given in the question and must be a comparison 1QMORE 360 kL mol ⁻¹ No marks can be awarded if structure A is selected Image: Imag			and B if the description matches the
ii diagrams and explanations were seen. Delocalised electrons in structure B and p- orbital overlap were the most accessible marking points. ALLOW structure B is low in energy IGNORE structure B is loss in energy IGNORE structure B is less reactive ALLOW enthalpy change / hydrogenation for benzene is less (negative) than 3 × (-)119 IGNORE more positive than (-)357 kJ mol ⁻¹ ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks) DO NOT ALLOW more / less energy needed for the reaction Answer must feer to data given in the question and must be a comparison IGNORE 350 kJ mol ⁻¹ No marks can be awarded if structure A is selected Iii structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ Iii structure B is a better because (enthalpy change of hydrogenation for benzene is is) less (exothermic) than (-) 357 (kJ mol ⁻¹) ✓			Examiner's Comments
Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kJ mol ⁻¹) √ Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) Image: Structure B bit relatively for candidates scored the other mark for stating that structure B bit relatively for stating that structure B bit relatively for stating that structure B bit relatively for stating that structure B is better representation of benzene because it is more stable. Some candidates confused cyclohexene with structure A and incorrectly concluded that the hydrogenation of benzene is more exothermic than structure A. Some incorrectly referred to enthalpy of hydrogenation			diagrams and explanations were seen. Delocalised electrons in structure B and p- orbital overlap were the most accessible
ii structure B / delocalised structure is (more) stable ✓ aLLOW enthalpy change is less than 3x enthalpy change is less than 3x enthalpy change for cyclohexene iii structure B / delocalised structure is (more) stable ✓ DO NOT ALLOW more / less energy needed for the reaction Answer must refer to data given in the question and must be a comparison IGNORE 360 kJ mol ⁻¹ No marks can be awarded if structure A is selected 2 2 Iii structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ 1ii structure B is a better because in the question and must be a comparison IGNORE 360 kJ mol ⁻¹ 1ii structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic) than (-) 357 (kJ mol ⁻¹) ✓ 2 Examiner's Comments Many used the data given in the question to compare the enthalpy of hydrogenation of structure B but relatively few candidates scored the other mark for stating that structure B but relatively few candidates scored the other mark for stating that structure A and incorrectly concluded that the hydrogenation of benzene is nore exothermic than structure A. Some incorrectly referred to enthalpy of hydration			
reaction. Others referred to data they had memorised rather than using the information in the question as instructed.	structure B is a better because (enthalpy change of hydrogenation for benzene is) less (exothermic)	2	ALLOW enthalpy change / hydrogenation for benzene is less (negative) than 3 × (-)119 IGNORE more positive than (-)357 kJ mol ⁻¹ ALLOW enthalpy change is less than 3x enthalpy change for cyclohexene ALLOW structure B is more stable by 149 kJ mol ⁻¹ (2 marks) DO NOT ALLOW more / less energy needed for the reaction Answer must refer to data given in the question and must be a comparison IGNORE 360 kJ mol ⁻¹ No marks can be awarded if structure A is selected Examiner's Comments Many used the data given in the question to compare the enthalpy of hydrogenation of structure A and structure B but relatively few candidates scored the other mark for stating that structure B is better representation of benzene because it is more stable. Some candidates confused cyclohexene with structure A and incorrectly concluded that the hydrogenation of benzene is more exothermic than structure A . Some incorrectly referred to enthalpy of hydration or stated that energy is required for the reaction. Others referred to data they had memorised rather than using the


				familiar to candidates. The reagents for the first reaction were very well known and although the conditions for the reaction were often quoted they were not required for the mark. The correct structure of the second reactant was rarely seen with the most common incorrect responses being based on cyclic structures. Most candidates were able to deduce the structure of the third reactant.
	ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 1.35 (g) award 3 marks IF answer = 0.54 (g) award 2 marks (no scale-up) IF answer = 0.216 (g) award 2 marks (incorrect scale-up) $n(\text{compound D}) = 1.73/346 = 0.00500 \text{ mol } \checkmark$ $n(1,3-\text{diaminobenzene}) \text{ required } = 100/40 \times 0.005$ $= 0.0125 \text{ mol } \checkmark$ Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (108)(0.0125) = 1.35 g \checkmark	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC If there is an alternative answer, check to see if there is any ECF credit possible ALLOW ECF from incorrect amount, scale-up or molar mass Alternative 1 n(compound D) = 1.73/346 = 0.00500 mol Molar mass of 1,3-diaminobenzene = 108 (g mol ⁻¹) AND Mass of 1,3-diaminobenzene = (0.00500)(108) = 0.540 g Mass of 1,3-diaminobenzene required = (0.540)(100/40) = 1.35 g Alternative 2 346 g gives 108 g 1.73 g gives 108/364 × 1.73 = 0.54 g $0.54/40 \times 100 = 1.35 g$ Examiner's Comments Candidates had been well prepared for this type of percentage yield question and it was very well answered with almost all candidates scoring marks here and a high proportion gaining all three marks for the calculation.
		(compound D has) two chiral centres √		ALLOW (Compound D) has two asymmetric carbons OR has two stereocentres
	ii i	Four optical isomers exist ✔	3	ALLOW four enantiomers OR two pairs of enantiomers
		(Synthesis could) use enzymes OR bacteria OR use (chemical) chiral synthesis OR chiral catalysts		INDEPENDENT MARK ALLOW biological catalysts ALLOW chiral transition metal complex /

		OR use natural chiral molecules OR single isomers (as starting materials) ✓		catalyst OR stereoselective transition metal complex / catalyst ALLOW 'chiral pool' / chiral auxiliary Examiner's Comments Two chiral centres and four optical isomers was required in the mark scheme and less specific answers did not score the first two marks. Two pairs of enantiomers was an accurate description worthy of the mark and a reference to there being four enantiomers was also given credit. The majority of candidates scored only the third mark with their suggestion of how to improve the synthesis. Some candidates missed the point here and instead described techniques required to separate the optical isomers.
		Total	16	
1 3	a i	$O_{COONa}^{O_{Na}}$	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous DO NOT ALLOW —O—Na OR -COO-Na (covalent bond) ALLOW —O ⁻ ALLOW —ONA ALLOW —COONA OR ALLOW delocalised carboxylate
				reaction with excess sodium hydroxide. Many answers included the product formed by the reaction of just one of the functional groups. Most commonly the phenol group was left unreacted. The mark scheme permitted the omission of the cation from the formula of the compound but this omission was rarely seen.
	ii	(Bromine) would be decolourised / turn (from orange / red / yellow / brown) to colourless	1	IGNORE goes clear

		OR white precipitate / solid / emulsion (formed) ✓		DO NOT ALLOW other colours for bromine IGNORE cream precipitate DO NOT ALLOW salicylic acid turns colourless / decolourised IGNORE temperature / fumes Examiner's Comments The observation for the reaction of a phenol with bromine was very well known
				and many candidates offered two correct observations when only one was required to score the mark.
	ii i	$\bigcup_{COOH} + Br_2 \rightarrow \bigcup_{Br} + HBr$	1	ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous MUST be all correct to score mark ALLOW molecular formulae, i.e. $C_7H_6O_3 + Br_2 \rightarrow C_7H_5O_3Br^+ HBr$ Examiner's Comments A very well answered question. Most candidates copied the structural formulae given in the question. Some made errors when they unnecessarily converted the structures into molecular formulae. HBr
	i v	(CH ₃) ₂ CHOH / CH ₃ CH(OH)CH ₃ / propan(–)2(–)ol AND acid / H ⁺ / H ₂ SO ₄ (catalyst) ✓	1	 was occasionally missing as a product. ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous ALLOW 2-propanol DO NOT ACCEPT incorrect name or incorrect formula of alcohol IGNORE reflux / concentrated (acid) Examiner's Comments Many candidates correctly gave the formula for propan-2-ol and included an acid catalyst. Common non-scoring answers omitted the acid or the alcohol or gave an incorrect name for the alcohol.



				with HBr as a product. Relatively few candidates lost marks for incorrectly positioned curly arrows.
				ALLOW diagram to show movement of lone pair into ring but delocalised ring must be mentioned
		(In salicylic acid)		ALLOW lone pair / pair of electrons on O(H) / phenol is (partially) drawn / attracted / pulled into delocalised ring
				IGNORE 'activates the ring'
		lone pair / pair of electrons on O(H) / phenol is \backsim (partially) delocalised into the ring \checkmark		ALLOW more electron rich
		electron density increases / is high ORA √		DO NOT ALLOW charge density or electronegativity
ii	ii		3	ALLOW (salicylic acid) attracts electrophiles more/more susceptible to electrophilic attack
		Br₂ / electrophile is (more) polarised ORA √		ALLOW Br ₂ is (more) attracted OR Br ₂ is not polarised by benzene OR induces dipoles (in bromine / electrophile)
				Delocalise(d) needed to score the first marking point
		QWC : delocalised / delocalized / delocalise <i>etc</i> .		Examiner's Comments
		must be spelled correctly in the correct context at least once		This question was very well answered with the majority of candidates scoring at least two marks. The most common errors were the omitting the words delocalised or lone pair or failure to use the word delocalised in the correct context.
				ALLOW reagent mark if HNO₃ in equation
		Step 1 Add HNO ₃ \checkmark		IGNORE H ₂ SO ₄ (NOTE: H ₂ SO ₄ not required with phenols)
c i	i	$OH + HNO_3 \longrightarrow O_2N + OH + HNO_3 + O_2N + OH + O$	4	IGNORE concentrations of acids / temperature
		√ Step 2		ALLOW correct structural OR displayed OR skeletal formulae OR combination of above as long as unambiguous
		Tin AND concentrated HC/ ✓		
				Equations MUST be completely correct for one mark each

6.1.1 Aromatic Compounds

		Total	1	
1 5		Electrophilic substitution means benzene ring Electrophilic addition means alkene / C=C Isomer of C ₉ H ₈ O ₂ containing C=C, benzene ring AND COOH Correct isomer: $\int_{0}^{00H} \int_{0}^{0} $	5	Concluded using data provided and conclusions from 1st two marks. ALLOW 1 mark for: COOH OR (does not gain final justification mark)
		Total	5	
1 6	а	 Experimental evidence – ANY TWO from carbon–carbon bond lengths are the same in benzene Enthalpy change of hydrogenation is less (exothermic) for benzene (than for Kekulé model) Discussion of named reaction to highlight greater stability, e.g. chlorination of benzene requires a catalyst whereas no catalyst is needed for alkenes Bonding in modern model p-orbitals overlap to form π bonds (π–)electrons are delocalised 	4	ALLOW both marks for correctly labelled diagrams showing overlap of p-orbitals to form delocalised π–electrons
	b	Generation of electrophile $A/Cl_3 + Cl_2 \rightarrow A/Cl_4^- + Cl^+$ Electrophilic substitution Curly arrow from π -bond to Cl ⁺ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	5	ANNOTATE ANSWER WITH TICKS AND CROSSES DO NOT ALLOW the following intermediate:

				OR induces dipoles (in chlorine / electrophile)
		Total	16	
1 7	i	HO OH HO OH	1	ALLOW correct structural OR displayed OR skeletal formulae OR a combination of above as long as unambiguous ALLOW disubstituted compound with <i>tert</i> - butyl groups adjacent
	ii	(The student's friend is correct because) the lone pair of electrons on the oxygen atom(s) is donated to / partially delocalised into the π system making quinol more susceptible to electrophilic attack	3	ALLOW "the oxygen p-orbital overlaps with" ALLOW diagrammatic answer for 1st and 2nd marks: 1st mark: π system OR 6 × p orbitals shown 2nd mark: O lone pair OR O p-orbital AND interaction ALLOW undergoes electrophilic substitution more easily if 1st and 2nd marks achieved through diagram, conclusion must refer to diagram for 3rd mark
		Total	4	